[4123] – 205

Seat	
No.	

M.A./M.Sc. (Semester – II) Examination, 2012 MATHEMATICS MT-605 : Partial Differential Equations (2008 Pattern)

Time :	3 Hours Max. Marks : 8	30
	N.B. : i) Attempt any five questions. ii) Figures to the right indicate full marks.	
1. a)	Eliminate the arbitrary function f from the equation $x + y + z = f(x^2 + y^2 + z^2)$	5
b)	Find the general solution of :	
	$y^2p - xyq = x (z - 2y).$	5
c)	Solve $\frac{\partial^2 z}{\partial x \partial y} = x^2 y.$	3
d)	State the condition for the equations $f(x, y, z, p, q) = 0$ and $g(x, y, z, p, q) = 0$ to be compatible on a domain D.	3
2. a)	Solve the nonlinear partial differential equation $zpq - p - q = 0$.	4
b)	Explain the method of solving the first order partial differential equations. i) $f(z, p, q) = 0$	
	ii) $g(x, p) = h(y,q)$.	6
c)	Find a one parameter family of common solutions of the equations $xp = yq$ and $z(xp + yq) = 2xy$.	6
3. a)	If an element $(x_0, y_0, z_0, p_0, q_0)$ is common to both an integral surface $z = z (x, y)$ and a characteristic strip, then show that the corresponding characteristic curve lies completely on the surface.	8
b)	Find the solution of $z = \frac{1}{2} (p^2 + q^2) + (p - x) (q - y)$ which passes through the x-axis. P.T.	8 0.

[4123] - 205

4. a) Find the complete integral of $p^2 - y^2 q = y^2 - x^2$ by Charpits method.

b) Reduce
$$\frac{\partial^2 u}{\partial x^2} = (1 + y)^2 \frac{\partial^2 u}{\partial y^2}$$
 to canonical form . 6

- c) Prove that the solution of Neumann problem is unique up to the addition of a constant.
- 5. a) Using D'Alemberts solution of infinite string find the solution of

$$\frac{\partial^2 y}{\partial x^2} = \frac{1}{c^2} \frac{\partial^2 y}{\partial t^2}, \ 0 < x < \infty, \ t > 0$$

y (x, 0) = u(x), y_t (x, 0) = v(x), x ≥ 0
y (0, t) = 0, t ≥ 0. 8

- b) Solve the equation $U_x^2 + U_y^2 + U_z = 1$ by Jacobi's method. 8
- 6. a) Prove that the solution of following problem exist then it is unique :

$$u_{tt} - c^{2} u_{xx} = F(x, t) , 0 < x < l, t > 0$$

$$u(x, 0) = f(x) \quad 0 \le x \le l$$

$$u_{t} (x, 0) = g(x)$$

$$u(0, t) = u(l, t) = 0, t \ge 0.$$

6

- b) Suppose that u(x, y) is harmonic in a bounded domain D and continuous in $\overline{D} = DUB$ then prove that u attains its maximum on the boundary B of D.
- c) Classify the equation $u_{xx} 2x^2 u_{xz} + u_{yy} + u_{zz} = 0$ into hyperbolic, parabolic or elliptic type.

7

3

4

-3-

- 7. a) State and prove Harnack's theorem.
 - b) Find the solution of Dirichlet problem for the upper half plane which is defined as $u_{xx} + u_{yy} = 0$; $-\infty < x < \infty$, y > 0

$$\begin{split} u\ (x,\,0) &= f(x)\ -\infty < x < \infty \ \text{with the condition that } u \text{ is bounded as } y \to \infty \,,\, u \\ \text{and } u_x \text{ vanish as } |x| \to \infty \,. \end{split}$$

- c) Solve the Quasi-Linear equation $zz_x + z_y = 1$ containing the initial data curve $x_0 = s, y_0 = s, z_0 = \frac{1}{2} s$ for $0 \le s \le 1$.
- 8. a) Using Duhamel's principle find the solution of non homogeneous equation

 $u_{tt} - c^2 u_{xx} = f(x, t); -\infty < x < \infty, t > 0$ $u(x, 0) = u_t(x, 0) = 0; -\infty < x < \infty.$

- b) Using the variable separable method solve $u_t = ku_{xx}$; 0 < x < a, t > 0 which
 - satisfies condition u (0, t) = u(a, t) = 0; t > 0 and u (x, 0) = x(a x); $0 \le x \le a$. 8

B/I/12/675

6

 \sim

[4123] – 102

Seat No.

M.A./M.Sc. (Semester – I) Examination, 2012 MATHEMATICS (2008 Pattern) MT-502 Advanced Calculus

Time : 3 Hours Max. Ma		
 N.B.: 1) Attempt any five questions. 2) Figures at right indicate full marks. 		
1. a) Show that composition of continuous functions is continuous.	5	
b) Compute all first order partial derivatives for function $f(x, y) = x^4 + y^4 - 4x^2y^2$ what can you say about their mixed partial derivatives ?	5	
c) With all usual notations prove that $T_a(\overline{y}) = f'(\overline{a}; \overline{y})$.	6	
2. a) Find the directional derivative of scalar field $f(x, y) = x^2 - 3xy$ along the parabola $y = x^2 - x + 2$ at the point (1, 2).	5	
b) Comment : If the vector field \overline{f} is differentiable at \overline{a} , then \overline{f} is continuous at \overline{a} .	5	
c) State and prove matrix form of chain rule.	6	
3. a) Let f be two dimensional vector field given by $f(x,y) = \sqrt{y} i + (x^3 + y) j \forall (x,y) y \ge 0$ calculate line integral of f from (0, 0) to (2, 2) along straight line joining these two points.	5	
b) Prove that the change in kinetic energy in any time interval is equal to work done by f during this time interval.	5	
c) State and prove second fundamental theorem of calculus.	6	
4. a) State and prove linearity property of double integral.	5	
b) Evaluate : $\iint_Q (x \sin y - y e^x) dx dy$ where $Q = [-1, 1] \times [0, \pi/2]$ Figure is		
expected.	5	
c) Show that graph of continuous real valued function on closed interval has content zero.	6	
P.	т.о.	

[4123] – 102

5.	a)	State and prove Green's theorem for plane regions bounded by Peicewise Smooth Jordon curves.	8
	b)	Evaluate the integral $\iint_{S} e^{(y-x)(y+x)} dx dy$ where S is triangle bounded by line	
		x + y = 2 and two coordinate axes.	5
	c)	State first fundamental theorem of calculus.	3
6.	a)	Show that Jacobian of transformation by spherical coordinates with all usual notations is $-\rho^2 \sin \phi$.	5
	b)	Write the parametric representation of a surface of sphere.	5
	c)	Define fundamental vector product. Explain its geometrical interpretation.	6
7.	a)	Find the area of hemisphere of radius 1 using surface integrals.	5
	b)	Define surface integral and illustrate with an example.	3
	c)	State and prove Stroke's theorem.	8
8.	a)	Find divergence and curl of a gradient of scalar field.	6
	b)	State and prove divergence theorem.	10

B/I/12/400

Seat No.

 \sim

M.A./M.Sc. (Semester – I) Examination, 2012 MATHEMATICS MT 505 : Ordinary Differential Equations (2008 Pattern)

Time : 3 Hours Max. Ma	
N.B. : i) Attempt any five questions. ii) Figures to the right indicate full marks.	
1. a) If $y_1(x)$ and $y_2(x)$ are any two solutions of equation $y'' + P(x)y' + Q(x)y = 0$ on [a, b] then prove that their Wronskian W = W (y_1, y_2) is either identically	r
zero or never zero on [a, b].	6
b) If $y_1 = x$ is one solution of $x^2y'' + xy' - y = 0$ then find other solution.	6
c) Verify that $y_1 = 1$ and $y_2 = \log x$ are linearly independent solutions of a	
equation $y'' + (y')^2 = 0$ on any interval to the right of the origin.	4
2. a) Discuss the method of variation of parameters to find the solution of second	1
order differential equation with constant coefficients.	8
b) Find the general solution of $y'' - y' - 2y = 4x^2$ by using method of	
undetermined coefficients.	6
c) Reduced the equation $x''(t) + 4t x'(t) + t^2 x = 0$ into an equivalent system of	
first order equation.	2
3. a) State and prove sturm comparison theorem.	8
b) Find the general solution of a equation $(1 - x^2)y'' - 2xy' + P(P + 1)y = 0$ about	t
X = 0 by power series method.	8

P.T.O.

[4123] - 105

4. a) Let u(x) be any nontrivial solution of u'' + q(x)u = 0 where q(x) > 0 for all

x > 0. If
$$\int_{1}^{\infty} q(x) dx = \infty$$
 then prove that u(x) has infinitely many zeros on the positive x-axis.

- b) Find the solution of y'' 5y' + 6y = 0 with initial condition $y(1) = e^2$ and $y'(1) = 3e^2$.
- c) Locate and classify the singular points on the x-axis of a equation $x^{2}(x^{2}-1)^{2} y'' - x(1-x) y' + 2y = 0.$
- 5. a) Solve the system

$$\frac{dx}{dt} = x + y$$

$$\frac{dy}{dt} = 4x - 2y$$
8

b) Find the critical points of

$$\frac{d^2x}{dt^2} + \frac{dx}{dt} = x^3 + x^2 - 2x .$$
 5

c) Determine the nature of a point $\chi = \infty$ for the equation $x^2y'' + 4xy' + 2y = 0$.

3

8

8

8

4

4

6. a) If m_1 and m_2 are roots of the auxiliary equation of the system

$$\frac{dx}{dt} = a_1 x + b_1 y$$
$$\frac{dy}{dt} = a_2 x + b_2 y$$

Which are real, distinct and of the same sign then prove that the critical point (0, 0) is a nod ?

b) Find all solutions of the nonautonomous system $\frac{dx}{dt} = x$; $\frac{dy}{dt} = x + e^t$ and sketch some of the curves defined by these solutions.

-2-

7. a) Determine whether the following functions is positive definite, negative definite or neither with justification.

i)
$$x^2 - xy - y^2$$

ii) $2x^2 - 3xy + 3y^2$
iii) $-x^2 - 4xy - 5y^2$
8
Solve the following initial value problem by Disords method

$$y' = x + y$$
; $y(0) = 1$ 6

- c) State Picard's existence and uniqueness theorem.
- 8. a) If f(x, y) be a continuous function that satisfies a Lipschitz condition.

 $|f(x, y_1) - f(x, y_2)| \le k |y_1 - y_2|$ on a strip defined by $a \le x \le b$ and $-\infty < y < \infty$. If (x_0, y_0) is any point of the strip, then prove that the initial value problem $y' = f(x, y), y(x_0) = y_0$ has one and only one solution y = f(x) on the interval $a \le x \le b$. **10**

b) Solve the following initial value problem

$$\frac{dy}{dx} = z \qquad y(0) = 1$$
$$\frac{dz}{dx} = -y \qquad z(0) = 0$$

6

2

[4123] - 105

B/I/12/325

-3-

[4123] – 203

Seat	
No.	

M.A./M.Sc. (Semester – II) Examination, 2012 MATHEMATICS MT 603 : Groups and Rings (2008 Pattern)

Time : 3 Hours

Max. Marks : 80

N.B. : 1) Attempt any five questions.
2) Figures to right indicate full marks.
3) All questions carry equal marks.

1.	a) b)	If G is a finite cyclic group generated by 'a' and $ G = n$ then prove that foreach positive divisor K of n, G has exactly one subgroup of order K.Prove that a group of order 4 is abelian.	6 5
	c)	If the group G has exactly two non-trivial proper subgroups then prove that G is cyclic and $ G = pq$ where p and q are distinct primes or G in cyclic and $ G = p^3$ where p is prime.	5
2.	a)	If the pair of cycles $\alpha = (a_1, a_2,, a_m)$ and $\beta = (b_1, b_2,, b_n)$ have no entries in common then prove that $\alpha \beta = \beta \alpha$.	6
	b)	If $\beta \in S_7$ and if $\beta^4 = (2 \ 1 \ 4 \ 3 \ 5 \ 6 \ 7)$; then find β .	5
	c)	Prove that the cyclic group Z_n has even number of generators. If $n > 2$.	5
3.	a) b)	Prove that every group is isomorphic to a group of permutation.	3
		Is the converse of Lagrange's theorem true ? Justify.	3
4.	a)	Let G and H be finite cyclic groups prove that $G \oplus H$ is cyclic if and only if $ G $ and $ H $ are relatively prime.	5

[4123] – 203

	b)	Determine the number of elements of order 5 in $Z_{25} \oplus Z_5$.	5
	c)	Prove or disprove :	
		i) $Z \oplus Z$ is cyclic	
		ii) $S_3 \oplus Z_2 \simeq A_4$.	5
5.	a)	Prove that for any group G, $\frac{G}{Z(G)}$ is isomorphic to Inn (G).	6
	b)	Let G be a non-abelian group of order p^3 (P is prime) and Z(G) \neq e then prove that $ Z(G) = p$.	5
	c)	Find a group homomorphism ϕ from U(40) to U(40) with Kernel {1, 9, 17, 33} and ϕ (11) =11.	5
6.	a)	If K is a subgroup of G and N is a normal subgroup of G then prove that $\frac{K}{K \cap N} \cong \frac{KN}{N}.$	6
	b)	Determine all homomorphic images of D_4 , octic group (upto an isomorphism).	5
	c)	Prove that any Abelian group of order 45 has an element of order 15. Does every abelian group of order 45 have an element of order 9?	5
7.	a)	If $ G = p^2$, where p is prime then prove that G is abelian.	6
	b)	Write the class equation of the group D ₄ (oclic group) and hence find its all normal subgroups.	5
	c)	Prove that $\frac{D_4}{Z(D_4)} \cong Z_2 \oplus Z_2$.	5
8.	a)	If G is a finite group and p is a prime such that p^k divides $ G $ then prove that G has at least one subgroup of order p^k .	6
	b)	Show that there are only two abelian groups of order 99. Determine them.	5
	c)	Determine the number elements of order 5 in a group of order 20.	5

B/I/12/650

[4123] – 204

Seat No.

M.A./M.Sc. (Semester – II) Examination, 2012 Mathematics MT-604 : COMPLEX ANALYSIS (2008 Pattern)

Time : 3 Hours

Max. Marks : 80

6

4

5

3

- N.B.: 1) Answer any five questions.2) Figures to the right indicate full marks.
- 1. a) If Σ an $(z a)^n$ is a given power series with radius of convergence R, then

prove that
$$R = \lim \left| \frac{a_n}{a_{n+1}} \right|$$
 if this limit exists. 6

b) Under stereographic projection for each of points z = 0, z = 3 + 2i, give the corresponding points of the unit sphere S in \mathbb{R}^3

c) Find the radius of convergence of
$$\sum_{n=1}^{\infty} \frac{(-1)^n}{n} z^{n(n+1)}$$
.

- 2. a) Let f and g be analytic on G and Ω respectively and suppose f(G) C Ω . Prove that gof is analytic on G and $(gof)'(z) = g'(f(z))f'(z) \forall z \in G$. 8
 - b) Let G be either the whole plane C or some open disk. If $u: G \to \mathbb{R}$ is a harmonic function then prove that u has a harmonic conjugate.
 - c) Show that $f(z) = |z|^2 = x^2 + y^2$ has a derivative only at the origin.
- 3. a) Define a Mobius transformation. If z_2 , z_3 , z_4 are distinct points and T is any Mobius transformation then prove that $(z_1, z_2, z_3, z_4) = Tz_1, Tz_2, Tz_3, Tz_4)$ for any point z_1 .
 - b) Let f be analytic in the disk B(ajR) and suppose that γ is a closed rectifiable curve in B(ajR). Prove that $\int f = 0$. 5

c) Let
$$\gamma(t) = e^{it}$$
 for $0 \le t \le 2\pi$. Then find $\int_{Y} z^n dz$ for every integer n. 5

P.T.O.

[4123] - 204

-2-

8

6

2

8

6

2

6

- 4. a) Let G be a connected open set and let $f: G \to \mathbb{C}$ be an analytic function. Prove that the following are equivalent statement
 - i) f ≡ 0
 - ii) There is a point a in G such that $f^n(a) = 0$ for each $n \ge 0$
 - iii) $\{z \in G : f(z) = 0\}$ has a limit point in G.
 - b) State and prove Liouville's theorem.
 - c) State Maximum Modulus Theorem.
- 5. a) Let G be an open subset of the plane and f : G → C an analytic function. If γ is a closed rectifiable curve in G such that η(r; w) = 0 for all W in C G then prove that for a in G {γ}

$$\eta(\gamma; \mathbf{a}) \mathbf{f}(\mathbf{a}) = \frac{1}{2\pi i} \int_{\gamma} \frac{\mathbf{f}(z)}{z - \mathbf{a}} \, \mathrm{d}z \, .$$

b) Let f be analytic on D = B(0; 1) and suppose $|f(z)| \le 1$ for |z| < 1. Show $|f'(0)| \le 1$. 4

c) Evaluate
$$\int_{\gamma} \frac{e^z - e^{-z}}{z^n} dz$$
 where n is a positive integer and $\gamma(t) = e^{it} \ 0 \le t \le 2\pi$. **4**

- 6. a) State and prove Goursat's theorem.
 - b) If G is simply connected and $f: G \to \mathbb{C}$ is analytic in G then prove that f has a primitive in G.
 - c) State Fundamental Theorem of Algebra.
- 7. a) State and prove Rouche's Theorem.
 - b) If G is a region with a in G and if f is analytic on $G \{a\}$ with a pole at z = a. In prove that there is a positive integer m and an analytic function $g: G \to \mathbb{C}$ such that

$$f(z) = \frac{g(z)}{(z-a)^m}.$$

c) Show
$$\int_{0}^{\infty} \frac{\sin x}{x} \, dx = \frac{\pi}{2}$$
. 5

8. a) Let G be a region in C and f an analytic function on G. Suppose there is a constant M such that lim sup | f(z) |≤ M ∀a in ∂_∞G. Then prove that | f(z) |≤ M ∀z in G.

- b) Let D = {z | |z| < 1} and let $f : D \to D$ be a one-one analytic map of D onto itself and suppose f(a) = 0. Then prove that there is a complex number C with |C| = 1 such that $f = C\phi_a$ where ϕ_a is a one-one map of D onto itself.
- c) Let f be analytic in B(a;R) and suppose that f(a) = 0. Show that 'a' is a zero of multiplicity m iff

 $f^{(m-1)}(a) = \dots = f(a) = 0 \text{ and } f^{(m)}(a) \neq 0.$

B/I/12/675

6

6

[4123] – 302

Seat	
No.	

M.A./M.Sc. (Semester – III) Examination, 2012 MATHEMATICS MT 702 : Ring Theory (2008 Pattern)

Time : 3 Ho	ours Max. Marks : 8	30
	 N.B. : 1) Attempt any five questions. 2) Figures to the right indicate full marks. 3) Each question carry equal marks. 	
1. a) Pro	ove that a finite ring R is field iff it is integral domain.	6
b) If R the i)	t is a ring of all continuous functions from [0, 1] to set of all real numbers IR n : Find units of R	6
ii) iii)	Find a function in R which is neither unit nor a zero-divisor Is R an integral domain.	
c) Pro	ove that the only Boolean ring that is an integral domain is $\frac{Z}{2Z}$.	4
2. a) If A	is a subring and B is an ideal of the ring R then prove that	6
<u>A</u> - E	$\frac{+B}{B} \cong \frac{A}{A \cap B}$	
b) Def	fine the centre of a ring.	
Wh	nat is the centre of a division ring?	
lf φ cer	$S: R \rightarrow S$ is onto homomorphism of rings, then prove that the image of the intre of R is contained in the centre of S.	6
c) If I a unc	and J are ideals of the ring R then prove that ideal IJ is contained in I \cap J , der what conditions(s) equality hold ? P.T	4 .o.

[4123] – 302

-2-

3.	a)	Prove that every ideal in a Euclidean domain is principal.	6
	b)	If R is quadratic integer ring $Z\left[\sqrt{-5}\right]$ and N is associated field norm defined	
		by N(a + b $\sqrt{-5}$) = a ² + 5b ² then show that R is not a Euclidean domain.	
		(w.r.t. this norm)	5
	c)	Find a generator for the ideal (85, 1 + 13i) in Z [i].	5
4.	a) b)	Prove that in a principal ideal domain (non zero) ideal is prime iff it is maximal. Is it true that the quotient of a PID is PID ? Justify.	6
		If not under what condition(s) it is true. (Give proof)	5
	c)	If $R = Z\left[\sqrt{-5}\right]$ is a quadratic integer ring then show that ideal $I = (2, 1 + \sqrt{-5})$ is not principal ideal but I^2 is principal ideal.	5
5.	a)	Prove that in principal ideal domain a non-zero element is a prime if and only if it is irreducible.	6
	b)	Consider the ring R = Z [2i] = $\{a + 2bi a, b \in Z\}$ show that (i) the elements 2 and 2i in R are irreducible but not associate in R. (ii) 2 i is not prime in R. (iii) Is R a unique factorization domain ?	6
	c)	Prove that $I = (1 + i)$ is a maximal ideal in Z [i] and hence show that the	
		quotient ring $\frac{Z[i]}{(1+i)}$ is a field of order 2.	4
6.	a)	If I is an ideal of the ring R and $(I) = I [x]$ is an ideal of R[x] generated by I then	
		prove that $\frac{R[x]}{(I)} \simeq \left(\frac{R}{I}\right)[x]$. What happens if I is a prime ideal of R.	6
	b)	If $R = Q[x, y]$, polynomial ring in two variables x and y over the rational numbers then prove that :	
		i) The ideal I = (x) is prime but not maximal in R.	
		ii) The ideal $J = (x, y)$ is maximal in R. iii) The ideal $J = (x, y)$ is root principal in R	6
	C)	Describe the ring structure of the following rings :	4
	-,	i) $\frac{Z[x]}{(2)}$ ii) $\frac{Z[x]}{(x)}$.	•

7.	a)	If R is a UFD with field of fraction F and if $p(x) \in R[x]$.	
		Prove that if $p(x)$ is reducible in $F[x]$ then $p(x)$ is reducible in $R[x]$.	8
	b)	If F is a field and R is set of all polynomials in F $[x]$ whose coefficient of x is zero. Show that R is not a UFD.	4
	c)	If R is the set of all polynomials in x with rational coefficients whose constant term is an integer then prove that x cannot written as the product of irreducibles in R.	4
8.	a)	State and prove Eisenslein's criterion for irreducibility of polynomial.	6
	b)	Prove that if F is a finite field then the multiplicative group F* of non-zero elements of F is a cyclic group.	5
	c)	Construct the field with 9 elements.	5

-3-

B/I/12/260

[4123] – 305

Seat	
No.	

M.A./M.Sc. (Semester – III) Examination, 2012 MATHEMATICS MT-705 : Graph Theory (2008 Pattern)

Time : 3 Hours	Max. Marks : 80
N.B. : 1) Attempt any five questions. 2) Figures to the right indicate f	ull marks.
1. a) Prove that every closed walk contains an odd	d cycle in a graph. 6
b) Prove that an edge is a cut edge if and only if	it belongs to no cycle. 6
c) Is an even graph with even number of vertices	s bipartite ? Justify. 4
2. a) Prove that a graph is bipartite if and only if it h	nas no odd cycle. 6
b) Prove that a complete graph K_n can be express graphs if and only if $n \le 2^k$.	ssed as the union of k bipartite 6
c) Use Havel-Hakimi theorem to determine whether t is graphic. Provide construction or proof of im	the sequence (5, 5, 4, 4, 2, 2, 1, 1) possibility. 4
3. a) Prove that a graph is Eulerian if and only if it h component and its vertices all have even degr	nas atmost one nontrivial ree. 8
 b) Let G be a graph with n verticcs then prove that equivalent. 	at the following statements are 8
A) G is connected and has no cycles.	
B) G is connected and has $n - 1$ edges.	
C) G has $n - 1$ edges and no cycles).	
D) G has no loops and has, for each u, $v \in V$	(G), exactly u – v path.

[4123] - 305

-2-

6

6

8

- 4. a) Prove that every loopless graph G has a bipartite subgraph with atleast e(G)/ 2 edges
 - b) Find the shortest path from vertex s to vertex t in the following graph.

c) Using Kruskal Algorithm find the minimal spanning tree of the following graph. **4**

- 5. a) Prove that a for a set $S \subset N$ for size n, there are n^{n-2} trees with vertex set S. 8
 - b) Solve the Chinese Postman problem for the following graph.

		-3-		[4123] – 30)5
6.	a)	Prove that an X, Y - bigraph G has a matrix $ N(S) \ge S $ for all $S \subseteq X$.	atching that saturates X if a	and only if	8
	b)	Prove that if G is a graph without isolated v	ertices, then $\alpha'(G) + \beta'(G)$	= n(G).	8
7.	a)	Prove that the Hungerian Algorithm finds minimum cost cover.	s a maximum weight matc	hing and a	6
	b)	If G is a simple graph, then prove that k	$k(G) \leq k'(G) \leq \delta(G).$		6
	c)	Define a tournament and a king in a digr has a king.	aph. Prove that every tour	nament	4
8.	a)	If a graph G has degree sequence $d_1 \ge d_2$ X(G) $\le 1 + \max_i \min \{d_i, i - 1\}.$	$\geq \geq d_n$, then prove that		6
	b)	Let $G \otimes H$ denote the cartesian product X ($G \otimes H$) = max { _x (G), _x (H)}.	of two graphs G and H. Pr	rove that	6
	c)	Draw a graph whose vertex connectivity minimum degree of a vertex is 6.	/ is 4, edge connectivity is	5, and the	4

B/I/12/260

[4123] - 101

Seat	
No.	

M.A./M.Sc. (Semester – I) Examination, 2012 MATHEMATICS MT-501 : Real Analysis – I (2008 Pattern)

Time : 3 Hours Max. Marks: 80 **N.B.**: 1) Attempt **any five** questions. 2) Figures to the right indicate full marks. 1. a) If (V, < ., .>) is an complex inner product space and ||V|| is defined by $||v|| = \sqrt{\langle v, v \rangle}$ then show that $|| \cdot ||$ is a norm on V. 6 b) Show that d (x, y) = $\frac{|x - y|}{1 + |x - y|}$ defines a metric on $(0, \infty)$. 5 c) Verify that I' is normal linear space. 5 2. a) State and prove Heine-Borel Theorem. 8 b) If E is a compact subset of a metric space then prove that it is closed. 6 c) Give an example to show that arbitrary intersection of open set in a metric 2 space is not open. 3. a) Show that C([a, b], IR) with supremum norm is complete. 6 b) Prove that a totally bounded set is bounded. Is the converse true? Justify. 6 c) Show that IR with the discrete metric is not separable. 4 4. a) For an interval I = $[a_1, b_1] \times ... \times [a_n, b_n]$ in \mathbb{R}^n define m(I) = $\prod_{k=1}^{n} (b_k - a_k)$ Let \in is the collection of all finite unions of disjoint intervals in \mathbb{R}^n . Show that m is a measure on \in . 6 b) Let A be any subset of IR ⁿ and let $\{I_{\mu}\}$ be countable covering of A. Prove that the function m^{*}(A) defined by m^{*}(A) = inf $\sum_{k=1}^{\infty} M(I_k)$ is countable sub additive. 5 c) Prove that if f is a measurable function then |f| is measurable. Give an counter example to show that if |f| is measurable f may not be measurable. 5

[4123] - 101

5.	a)	State and prove Lebesgue Monotone convergence theorem.	8
	b)	State and prove Hölder's Inequality.	6
	c)	State Fatou's Lemma.	2
6.	a)	Suppose that $f = \sum_{k=1}^{\infty} c_k f_k$ for an orthonormal sequence $\{f_k\}_{k=1}^{\infty}$ in an inner product space V. Then show that $C_k = \langle f, f_k \rangle$ for each k.	6
	b)	For f and g in an inner product space, $g \neq 0$. show that the two vector	
		$\frac{\langle f,g \rangle}{ g ^2}$ and $\frac{f-\langle f,g \rangle}{ g ^2}^g$ are orthogonal.	5
	c)	Show that the trigonometric system $\frac{1}{\sqrt{2\pi}}, \frac{\cos(nx)}{\sqrt{\pi}}, \frac{\sin(mx)}{\sqrt{\pi}}$ n, m = 1, 2 is	
		an orthonormal sequence in L ² ([- π , π],m).	5
7.	a)	State and prove Bessel's Inequality.	6
	b)	Give an example of a sequence of functions which is pointwise convergent but not uniformly. Justify.	5
	c)	Show that the classical Fourier series of $f(x) = x$ is $2\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n}$ Sin (n x).	5
8.	a)	State and prove Cauchy -Schwarz inequality.	6
	b)	Show that a Riemann integrable function is also Lebesgue integrable.	5
	c)	If f and g are measurable function then show that fg is measurable.	5

B/I/12/350

[4123] – 103

Seat	
No.	

M.A./M.Sc. (Semester – I) Examination, 2012 MATHEMATICS MT – 503 : Linear Algebra (2008 Pattern)

Time : 3 Hours

Max. Marks : 80

6

4

6

6

4

6

Instructions : 1) Attempt *any five* questions. 2) Figures to the right indicate maximum marks.

- a) Let V and V' be finite dimensional vector spaces over K of dimensions n and m respectively. Prove that dimL(V, V') = nm.
 - b) Let V be a finite dimensional vector space over K and let W be a subspace of V. Prove that dimV = dimW + dim V/W.
 - c) Let I = (-a, a), a > 0 be an open interval in R and let V = R^I, the space of all real valued functions defined on I.Show that $V = V_e \oplus V_0$, where V_e is the set of all even functions on I and V_0 is the set of all odd functions on I.
- 2. a) Let B be an ordered basis of an n-dimensional vector space V over K. If T is a linear operator on V, then prove that T is a bijection if and only if [T]_B is an invertible matrix.
 - b) Let $V_1, V_2, ..., V_m$ be vector spaces over a field K. Prove that $V = V_1 \oplus ... \oplus V_m$ is finite dimensional if and only if each V_1 is finite dimensional. Also prove that $\dim V_1 \oplus ... \oplus V_m = \dim V_1 + ... + \dim V_m$.
 - c) Consider the vector space $R_3[x]$ of polynomials with real coefficients and of degree at most 3. The differential operator D is a linear operator on $R_3[x]$. Write the matrix representation of D with respect to $B_1 = \{1 + x, x + x^2, x^2 + x^3, x + x^3\}$.
- 3. a) Let $A \in K^{n \times n}$. The left multiplication by A defines a linear operator $\lambda_A : K^{n \times m} \to K^{n \times m}$ such that $\lambda_A (B) = AB$. Prove that α is an eigenvalue of λ_A if and only if α is an eigenvalue of A.
 - b) Let V and W be finite dimensional vector spaces over K, and let $T_{\in} L(V, W)$. Prove that i) ker $T^{\bullet} = (imT)^{\circ}$, ii) $imT^{\bullet} = (ker T)^{\circ}$ and iii) rankT = rank T^{\bullet} . 6

[4123] - 103

	c)	It T is an invertible linear operator on a finite dimensional vector space over a	
		field K, then prove that the minimal polynomial of T ⁻¹ is $m_T(0)^{-1} x^r m_T(\frac{1}{x})$, where $r = \text{degm}_T(x)$.	4
4.	a)	State and prove the primary decomposition theorem.	10
	b)	Prove that the geometric multiplicity of an eigenvalue of a linear operator can not exceed its algebraic multiplicity.	6
5.	a)	Let V be a finite dimensional vector space over K of dimension n and let T be a linear operator on V. If the characteristics polynomial of T splits over K, then prove that T is triangulable.	8
	b)	Prove that a Jordan chain consists of linearly independent vectors.	4
	c)	The characteristics polynomial of a matrix is $(x - 1)^3 (x - 2)^2$. Write its Jordan canonical forma.	4
6.	a)	Give all possible rational canonical forms it the characteristic polynomial is : i) $(x^2 + 2) (x - 3)^2$; ii) $(x - 1)^2 (x + 1)^2$.	6
	b)	Let V be a finite dimensional vector space over K and let T be a linear operator on V. Prove that V is a direct sum of $T - cyclic$ subspaces.	10
7.	a)	Prove the polarization identities for the inner product space.	4
	b)	Let V be a finite dimentional inner product space and let f be a linear functional on V. Prove that there exists a unique vector x in V such that $f(v) = (v,x)$, for all v in V.	8
	c)	Let T be triangulable linear operator on an n-dimensional inner product space V and let all the eigenvalues of T are equal to 1 in absolute value. If $ Tv \le v $ for all $v \in V$, then show that T is unitary.	4
8.	a)	Let T be a self adjoint operator on an inner product space V. Prove that all roots of characteristic polynomial of T are real.	5
	b)	Consider the inner product space $R_3[x]$ with the inner product	
		$(p(x), q(x)) = \int_{-1}^{1} p(x)q(x)dx$. Find the adjoint of the differential operator D.	5
	c)	Find a polar decomposition of the following matrix. $A = \begin{pmatrix} 1 & 0 & 2 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{pmatrix}$.	6

B/I/12/425

[4123] – 104

Seat	
No.	

M.A./M.Sc. (Semester – I) Examination, 2012 MATHEMATICS MT-504 : Number Theory (2008 Pattern)

Tim	e:	3 Hours Max. Marks :	80
		<i>Instructions :</i> 1) Attempt <i>any five</i> questions. 2) Figures to the <i>right</i> indicate <i>full</i> marks.	
1.	a)	Let a, b be integers, $b > 0$. Show that there exist unique integers q and r such that	
		$a = bq + r, \ 0 \le r < b.$	6
	b)	Find the highest power of 15 that divides 1000 !	4
	c)	Show that there are infinitely many primes in the arithmetic progression 3n + 1.	6
2.	a)	Let p be a prime. Show that the congruence $x^2 \equiv -1 \pmod{m}$ has a solution if and only if $p = 2$ or $p \equiv 1 \pmod{4}$.	6
	b)	Show that gcd $(2^{2^m} + 1, 2^{2^n} + 1) = 1$ if $m \neq n$.	5
	c)	Find the smallest positive integer N such that when divided by 7 leaves remainder 3, when divided by 33 leaves remainder 32 and when divided by 13 leaves remainder 10.	5
3.	a)	Let p be an odd prime and gcd (a, p) = 1. Consider the integers a, 2a,, $\{(p-1)/2\}a$ and their least non-negative residues modulo p. If n denotes the	
		number of residues modulo p then $\left(\frac{a}{p}\right) = (-1)^n$.	6
	b)	Decide whether the congruence $x^2 \equiv -42 \pmod{61}$ has a solution.	4
	c)	Prove that if n is an integer then 504 $ n^9 - n^3$.	6 г.о.

[4123] – 104

4.	a)	If p is a prime $p \equiv 1 \pmod{4}$ then show that there exist integers a, b such that $p = a^2 + b^2$.	10
	b)	Find all integers x and y such that $147x + 258y = 369$.	6
5.	a)	Define a multiplicative function. If $f(n)$ is multiplicative, then prove that $F(n) = \sum_{d/n} f(d)$ is a multiplicative function.	6
	b)	If $gcd(m, n) = 1$ then prove that $\phi(mn) = \phi(m)\phi(n)$.	5
	c)	Prove that 3 is a prime in $\mathbb{Q}(i)$ but not a prime in $\mathbb{Q}(\sqrt{6})$.	5
6.	a)	If α and β are algebraic numbers then show that $\alpha + \beta$, $\alpha\beta$ are algebraic numbers. Further, show that if α and β are algebraic integers then show that $\alpha + \beta$, $\alpha\beta$ are algebraic integers.	8
	b)	Show that if p is prime then $\binom{p}{k} \equiv 0 \pmod{p}$ for $1 \le k \le p-1$.	4
	c)	Let n be a positive integer. Show that d(n) is odd if and only if n is a perfect square.	4
7.	a)	Let m be a negative square-free national integer. Determine all the units in the field $\mathbb{Q}\left(\sqrt{m}\right)$.	7
	b)	If α is an algebraic number, then prove that there exist an integer b such that b α is an algebraic integer.	4
	c)	Prove that the field $\mathbb{Q}(\sqrt{-14})$ does not have unique factorization property.	5
8.	a)	Using unique factorization property of $\mathbb{Q}[i]$ or otherwise, determine all solutions of $x^2 + y^2 = z^2$ in positive integers such that gcd (x, y, z) = 1.	6
	b)	Find the minimal polynomial of $1 + \sqrt{2} + \sqrt{3}$.	5
	c)	Prove that if p and q are distinct primes of the form $4k + 3$, and if $x^2 \equiv p \pmod{q}$ has no solution, then $x^2 \equiv q \pmod{p}$ has two solutions.	5

[4123] - 201

Seat No.

> M.A./M.Sc. (Semester – II) Examination, 2012 MATHEMATICS MT-601 : General Topology (New) (2008 Pattern)

Time : 3 Hours

Max. Marks : 80

- **N.B.**: i) Attempt **any five** questions.
 - ii) Figures to the right indicate full marks.
- 1. a) Let X be any non-empty set, let τ_c be a collection of all subsets U of X such that X – U is either is finite or all of X. Then show that τ_c is a topology on X. **5**
 - b) Let \mathcal{B} and \mathcal{B}' be bases for the topologies $\tau \& \tau'$ respectively on X then show that τ' is finer than τ iff for each $x \in X$ and each basis element $B \in \mathcal{B}$ containing x there is a basis element $B' \in \mathcal{B}'$ such that $x \in B' \subset B$.
 - c) Show that the countable collection.

 $\mathcal{B} = \{(a, b) | a \& b \text{ are rational } \}$ is a basis that generates the standard topology on IR .

6

[4123] - 201

2. a) Show that the collection

 $S = \left\{ \pi_1^{-1}(U) \middle| U \text{ open in } X \right\} U \left\{ \pi_2^{-1}(V) \middle| V \text{ open in } Y \right\} \text{ is a subbasis for the product} topology on X_x Y.$

- b) If A is a subspace of X and B is a subspace of Y then show that the product topology on A×B is the same as the topology on A×B inherits as a subspace of X×Y.
- c) Let X be a topological space let $A \subseteq X$ if $\tau_A = \{ U \subseteq A | U = V \cap A,$ for some V open in X $\}$ then show that τ_A is a topology on A.
- 3. a) Let Y be a subspace of X : Let $A \subseteq Y$, let \overline{A} denote the closure of A in X. then show that closure of A in Y equals $\overline{A} \cap Y$.
 - b) Show that every order topology is Hausdorff.
 - c) Show that Int A and Bd A are disjoint and $\overline{A} = Int A \cup Bd A$.
 - d) State and prove the pasting lemma.
- 4. a) Show that [0, 1] & [a, b] are homeomorphic.
 - b) Let $f : A \to X_x Y$ be given by the equation $f(a) = (f_1(a), f_2(a))$. Then show that f is continuous iff the functions $f_1 : A \to X$ and $f_2 : A \to Y$ are continuous. 5
 - c) Let $f: A \to \pi_{\alpha \in J} X_{\alpha}$ be given by the equation $f(a) = (f_{\alpha}(a))_{\alpha \in J}$, where $f_{\alpha}: A \to X_{\alpha}$ for each α . Let πx_{α} have the product topology. Then show that the function f is continuous iff each function f_{α} is continuous.

-2-

5

6

5

4

4

6

5. a) Show that the topologies on \mathbb{R}^n induced by the Euelidean metric d and the square metric p are the same as the product topology on \mathbb{R}^n .

-3-

- b) Let X be a topological space; Let $A \subset X$. If there is a sequence of points of A converging to x, then show that $x \in \overline{A}$, the converse is true if X is metrizable. **5**
- c) Prove that retraction map is a quotient map.
- a) Let g : X → Z be a surjective continuous map Let X* = {g⁻¹(z)/z ∈ Z}. Give X* the quotient topology show that the map g induces a bijective continuous map f : X* → z, which is a homeomorphism iff g is a quotient map.
 - b) Let $\{A_{\alpha}\}$ be collection of connected subspaces of X. Let A be a connected subspace of X. Show that if $A \cap A_{\alpha} \neq \phi \forall \alpha$, then $A \cup \left(\bigcup_{\alpha} A \alpha\right)$ is connected. 5
 - c) Show that a path connected space X is connected. Is converse is true? Justify. 6
- 7. a) Let $\{A_{\alpha}\}$ is collection of path connected subspaces of X and if $\cap A_{\alpha} \neq \phi$, is $\bigcup_{\alpha} A_{\alpha}$ necessarily path connected ? 6
 - b) Show that every closed subspace of compact splace is compact. 5
 - c) Let X be locally compact Hausdorff; let A be a subspace of X. If A is closed inX or open in X then show that A is locally compact.

5

5

5

23]	-201 -4-	
a)	Show that a connected metric space having more than one elements is	-
	uncountable.	5
b)	Show that every metricable space is normal.	5
c)	Show that a subspace of completely regular space is completely regular.	4
d)	State Tychonoff theorem.	2
	23] a) b) c) d)	 23] - 201 -4- a) Show that a connected metric space having more than one elements is uncountable. b) Show that every metricable space is normal. c) Show that a subspace of completely regular space is completely regular. d) State Tychonoff theorem.

-

-5-

Seat	
No.	

M.A./M.Sc. (Semester – II) Examination, 2012 MATHEMATICS MT-601 : Real Analysis – II (Old)

Time : 3 Hours

Max. Marks: 80

5

- **N.B.**: i) Attempt **any five** questions.
 - ii) Figures to the **right** indicate **full** marks.

1.	a) With usual notations, prove that $\ f_1 f_2\ BV \le \ f_1\ BV \ f_2\ BV$.		5
	b)	If $f \in R_{\alpha}[a, b]$, then prove that $\alpha \in R_{f}[a, b]$ and $\int_{a}^{b} f d\alpha + \int_{a}^{b} \alpha df = f(b)\alpha(b) - f(a)\alpha(a).$	6
	c)	True or False. Justify.	
		A bounded continuous function is of bounded variation.	5
2.	a)	If f is Riemann integrable on [a, b], then prove that f is Lebesgue integrable.	6

b) Let $f \in R_{\alpha}[a, b]$ and c be a real number. Prove that

$$cf \in R_{\alpha}[a,b] \text{ and } \int_{a}^{b} cf d\alpha = c \int_{a}^{b} f d\alpha$$
 5

c) Give example of a bounded function which is not Riemann integrable. Justify your answer

[4123] – 201		-6-		
3. a) Let f, $g \in BV$ [a, b] and $a \le c \le b$, then prove that				
	$V_a^b(f+g) \le V_a^b(f) + V_a^b(g)$ and			
	$V^b_a(f) = V^c_a(f) + V^b_c(f) .$			
	b) Write the Fourier series for the follo	wing function :		
	$f(x) = x \text{ for } x \in [-\pi, \pi]$			
	 Define the outer measure. Give exa Justify 	ample of a set with outer n	neasure zero.	
4. a	a) If E and F are disjoint compact sets	, then prove that		
	$m * (E \cup F) = m * (E) + m * (F)$.			
I	b) Show that the improper Riemann ir	tegral $\int_{0}^{\infty} \frac{\sin x}{x} dx$ exists.		

- c) Let $\{f_n\}$ be a sequence of measurable functions, then show that $\text{sup}_n f_n$ is measurable.
- 5. a) Show that the sum of two measurable functions is measurable. 6
 - b) Suppose f is a non-negative and measurable function, then show that $\int f = 0$ if and only if f = 0 a.e.
 - c) If F is a closed subset of a bounded open set G, then prove that $m^{*}(G/F)=m^{*}(G) - m^{*}(F)$

6

4

6

6

4

5

5

- 6. a) Let $1 and q be defined by <math>\frac{1}{p} + \frac{1}{q} = 1$. If $f \in L_p(E)$ and $g \in L_q(E)$, then prove that $fg \in L_1(E)$ and $\left| \int_E fg \right| \le \int_E \left| fg \right| \le \|f\|_p \|g\|_q$. 5
 - b) Let $\{E_n\}$ be a sequence of measurable sets. If $E_n \supset E_{n+1}$ for each n and m (E_k) is finite for some k, then prove that

$$m\left(\bigcap_{n=1}^{\infty}\right)E_{n} = \lim_{n \to \infty} m(E_{n})$$

c) Show that
$$\lim_{n\to\infty} \int_0^1 f_n = 0$$
 where $f_n(x) = \frac{nx}{1+n^2x^2}$. 5

B/I/12/675

[4123] - 201

-7-
[4123] – 202

Seat	
No.	

M.A./M.Sc. (Semester – II) Examination, 2012 **MATHEMATICS MT-602** : Differential Geometry (2008 Pattern)

Time : 3 Hours

Max. Marks: 80

6

5

6

4

N.B.: i) Attempt any five questions. ii) Figures to the right indicate full marks.

- 1. a) Let U be an open subset of R ⁿ⁺¹ and f : U \rightarrow R be a smooth function. Let $p \in U$ be a regular point of f and let c = f(p). Show that the set of all vectors tangent to $f^{-1}(c)$ at p is equal to $[\nabla f(p)] \perp$.
 - b) Find the integral curve of the vector field X given by $X(x_1, x_2) = (x_1, x_2, x_2, -x_1)$ through the point (1, 1). 5
 - c) Show that the graph of any smooth function $f: \mathbb{R}^n \to \mathbb{R}$ is an n-surface in R ⁿ⁺¹.
- 2. a) Let S be a connected n-surface in Rⁿ⁺¹. Show that on S, there exists exactly two smooth unit normal vector fields N1 and N2.
 - b) Sketch the following vector fields on R^2 : X (p) = (p, X(p)) where i) X (p) = -pii) X $(x_1, x_2) = (x_2, x_1)$.
 - c) Let a, b, c, d \in R be such that ac $-b^2 > 0$. Show that the maximum and minimum values of the function $g(x_1, x_2) = x_1^2 + x_2^2$ on the ellipse

$$ax_1^2 + 2bx_1x_2 + cx_2^2 = 1$$
 are of the form $\frac{1}{\lambda_1}$ and $\frac{1}{\lambda_2}$ where λ_1 and λ_2 are eigen values of the matrix $\begin{pmatrix} a & b \\ c & b \end{pmatrix}$.

eigen values of the matrix (b c).

- 3. a) Let U be an open subset of \mathbb{R}^{n+1} and $f: U \to \mathbb{R}$ be a smooth function. Let S = f⁻¹ (c), c \in R and ∇ f (q) $\neq 0$, $\forall q \in$ S. If g : U \rightarrow R is smooth function and $p \in S$ is an extreme point of g on S, then show that there exists a real number λ such that $\nabla g(p) = \lambda \nabla f(p)$.
 - b) Show that the tangent space to $SL_2(R)$ at $P = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$ can be identified with

the set of all 2x2 matrices of trace zero.

c) Show that the speed of geodesic is constant.

4. a) Show that the covariant differentiation has the following property : (X.Y)' = X'.Y + X.Y'.

- b) Consider a vector field X (x_1 , x_2) = (x_1 , x_2 , 1, 0) on R². For $t \in R$ and $p \in R^2$, let ϕ_t (p) = $\alpha_p(t)$ where α is the maximal integral curve of X through p. Show that F (t) = ϕ_t is a homomorphism of additive group of real numbers into the invertible linear maps of the plane.
- c) Show that the Weingarten map of the n-sphere of radius r oriented by inward normal is multiplication by $\frac{1}{r}$. 5

5. a) Let α (t) = (x(t), y(t)) be a local parametrization of the oriented plane curve

C. Show that
$$k \circ \alpha = \frac{x'y'' - y'x''}{(x'^2 + y'^2)^{\frac{3}{2}}}$$
. 5

- b) Find the curvature of the circle with centre (a, b) and radius r oriented by the outward normal.
- c) Show that the Weingarten map L_p is self-adjoint.

(that is
$$L_p(v)$$
. $w = v$. $L_p(w)$, for all $v, w \in S_p$). 6

6. a) Let S be an n-surface in \mathbb{R}^{n+1} , let $\alpha : I \to S$ be a parametrized curve in S, let $t_0 \in I$ and $v \in S_{\alpha(t_0)}$. Prove that there exists a unique vector field V tangent to S along α , which is parallel and has V (t₀) = v. 6

-2-

6

6

4

5

6

[4123] - 202

6

6

5

b) Let S denote the cylinder $x_1^2 + x_2^2 = r^2$ of radius r in R³. Show that α is a geodesic of S if and only if α is of the form α (t) = (r cos (at + b), r sin (at + b), ct + d) for some real numbers a, b, c, d.

-3-

- c) Define the Gauss map and the spherical image of the oriented n -surface S. 4
- 7. a) Prove that on each compact oriented n-surface S in Rⁿ⁺¹ there exists a point p such that the second fundamental form at p is definite.
 - b) Let C be a connected oriented plane curve and let $\beta : I \rightarrow C$ be a unit speed global parameterization of C. Show that β is either one to one or periodic.
 - c) Show that the 1-form η on R² {0} defined by

$$\eta = \frac{-x_2}{x_1^2 + x_2^2} dx_1 + \frac{x_1}{x_1^2 + x_2^2} dx_2 \text{ is not exact.}$$
5

- 8. a) Let S be an n-surface in \mathbb{R}^{n+1} and let $p \in S$. Prove that there exists an open set V about p in \mathbb{R}^{n+1} and a parametrized n-surface $\phi : U \to \mathbb{R}^{n+1}$ such that ϕ is one to one map from U onto $V \cap S$.
 - b) Let S be the ellipsoid $\frac{x_1^2}{a^2} + \frac{x_2^2}{b^2} + \frac{x_3^2}{c^2} = 1$, a, b, c, all non -zero, oriented by the outward normal. Show that the Gaussian curvature of S is

$$K(p) = \frac{1}{a^2 b^2 c^2 \left(\frac{x_1^2}{a^4} + \frac{x_2^2}{b^4} + \frac{x_3^2}{c^4}\right)^2}.$$

8

8

B/I/12/675

[4123] - 206

Seat	
No.	

M.A./M.Sc. (Semester – II) Examination, 2012 MATHEMATICS MT-606 : Object Oriented Programming with C++ (2008 Pattern)

Time : 2 Hours

Max. Marks : 50

20

- **N.B.**: i) Question **1** is **compulsory**.
 - ii) Attempt any 2 out of question 2, 3 and 4.
 - iii) Figures at **right** indicate **full** marks.
- 1. Attempt the following questions :
 - i) What are drawbacks of procedure oriented programming languages?
 - ii) Write output of following program

```
# include <iostream.h>
    int main ()
    {
        cout << "Mathematics is bueatifull";</pre>
```

```
return o;
```

}

- iii) Write content and purpose of header file <float.h>.
- iv) State 6 relational operators used in C++.
- v) State one difference between break and continue.
- vi) How does class achieve data hiding?
- vii) Write general syntax for function declaration in C++.
- viii) Write a program in C++ to find square of a number.
 - ix) Define friend function.
 - x) List the operand that cannot be overloaded by C++.

[4123] – 206

2.	i)	Write an object oriented program in C++ to multiply two matrices. Let M_1 and M_2 be two matrices. Find out $M_3 = M_1 * M_2$.	10
	ii)	Write a note on overloading decrement operator.	5
3.	i)	What is difference between constructor and destructer ?	6
	ii)	Write a C++ program to find GCD of two positive integer using function.	9
4.	i)	Define :	9
		i) Call by value	
		ii) Call by reference	
		iii) Return by reference with examples.	
	ii)	State the difference between if else statement and switch statement.	6

B/I/12/200

[4123] – 301

Seat	
No.	

M.A./M.Sc. (Semester – III) Examination, 2012 MATHEMATICS MT – 701 : Functional Analysis (2008 Pattern)

Time : 3 Hours Max. Marks: 80 **N.B.**: i) Attempt **any five** questions. ii) Figures to the **right** indicate **full** marks. 1. a) State and prove Hahn-Banach theorem. 8 b) Show that $||T^*|| = ||T||$ and $||T^*T|| = ||T||^2$. 6 c) A linear operator T : $I^2 \rightarrow I^2$ is defined by T $(x_1, x_2,...) = \left(x_1, \frac{x_2}{2}, ..., \frac{x_n}{n}, ...\right)$. Find its adjoint T*. 2 2. a) If P is a projection on a Hilbert space H with range M and null space N, show that $M \perp N$ if and only if P is self-adjoint. In this case also show that $N = M^{\perp}$. 6 b) Let M be a closed linear subspace of a normed linear space N. If a norm of a coset x+M in the quotient space N/M is defined by $||| x + M ||| = \inf \{|| x + m || : m \in M\}$, then prove that N/M is a normed linear space. Further if N is Banach, then prove that N/M is also a Banach space. 8 c) Write example of a normal operator. 2 3. a) Show that an operator T on a finite dimensional Hilbert space H is normal if and only if its adjoint T* is a polynomial in T. 6 b) If T is any operator on a Hilbert space H then show that the following conditions are equivalent: i) T * T = Iii) $\langle Tx, Ty \rangle = \langle x, y \rangle$ for all $x, y \in H$

iii) ||T|| = ||x|| for all $x \in H$.

р.т.о.

[412	23] – 301	-2-	
	c) If T is any operator on a Hi $ \alpha = \beta $, then show that α T	ilbert space <i>H</i> and if α, β ⁻ + βT [*] is normal <i>.</i>	are scalars such that 4
4.	a) Give examples of two non-	equivalent norms. Justify	. 6
	 b) Let X and Y be normed s every linear transformation discontinuous linear transformation 	paces. If X is finite dime r from X to Y is continuou ormation.	ensional, then show that is. Give an example of a 8
	c) Show that the norm of an is	sometry is 1.	2
5.	a) If T is an operator on a Hil only if its real and imaginary pa	bert space H , then prov	e that T is normal if and
	b) Let M be a closed linear su natural mapping of N onto continuous linear transform	ubspace of a normed line N/M defined by $T(x) = x - nation for which T \le 1$.	ar space N and T be the + M. Show that T is a 6
	c) Show that the unitary oper	ators on a Hilbert space	H form a group. 4
6.	a) Let T be an operator on <i>H</i> . only if $\lambda^{-1} \in \sigma(T^{-1})$.	If T is non-singular, then s	show that $\lambda \in \sigma(T)$ if and 4
	b) If T is an operator on a Hil Rthen prove that T = 0. 6	bert space H for which \langle	$T\mathbf{x}, \mathbf{x} \rangle = 0 \text{ for all } \mathbf{x} \in H,$
	c) Let S and T be normal oper then prove that S + T and S	rators on a Hilbert space. ST are normal.	H. If S commutes with T*, 6
7.	a) State and prove the Closec	Graph Theorem.	8
	b) Let T be a normal operator self-adjoint if and only if ea	on <i>H</i> with spectrum $\{\lambda_1, \lambda_2, \lambda_3\}$ ach λ_i is real.	$\lambda_2, \lambda_m \}$. Show that T is 4
	c) Find M^{\perp} if $M = \{ (x, y) : x \in M \}$	+ y = 0} $\subset \mathbb{R}^2$.	4

[4123] -301

- 8. a) Let *H* be a Hilbert space and f be a functional on *H*. Prove that there exists a unique vector y in *H* such that $f(x) = \langle x, y \rangle$ for every $x \in H$. 8
 - b) Prove that every finite dimensional subspace of a normed linear space X is closed. Give an example to show that an infinite dimensional subspace of a normed linear space may not be closed.

B/I/12/260

8

-3-

[4123] – 303

Seat	
No.	

M.A./M.Sc. (Semester – III) Examination, 2012 MATHEMATICS MT 703 : Mechanics (2008 Pattern)

Time : 3 Hours

Max. Marks : 80

		Instructions : i) Attempt any five questions. ii) All questions carry equal marks. iii) Figures to the right indicate maximum marks.	
1.	a)	Explain the concept of virtual work and the D'Alember't principle.	4
	b)	Define a cyclic cordinate and show that the generalised momentum conjugate to a cyclic coordinate is conserved.	4
	c)	State Hamilton's principle and derive Lagrange's equations of motion, from Hamilton's principle.	8
2.	a)	Set up Lagrangian for Atwood's machine and write Lagrange's equations of motion.	6
	b)	A particle of mass m moves in one dimension such that it has the Lagrangian	
		$L(x, \dot{x}) = \frac{m}{2} \left(a\dot{x}^2 + 2b\dot{x}\dot{y} + c\dot{y}^2 \right) - \frac{K}{2} \left(ax^2 - 2bxy + cy^2 \right), m, k, a, b \text{ and } c \text{ are }$	
		constants and $b^2 - ac \neq 0$. Find the Lagrange's equations of motion and find the solution.	6
	c)	Determine the number of degrees of freedom in case of (i) conical pendulum (ii) a free particle moving in a plane.	4
3.	a)	Under which conditions $H = T + V$, where the symbols have the standard meaning ?	4
	b)	Find the values of α and β for which the following equations	
		$Q = q^{\alpha} \cos \beta p, P = q^{\alpha} \sin \beta p$	
		represent a canonical transformation.	4

- c) Show that identity transformation can not be generated by F_1 , or F_4 type of functions.
- d) Consider motion of a free particle having mass m in a plane. Express its kinetic energy in terms of plane polar coordinates and their time derivatives.
- 4. a) If the Hamiltonian H of the system is

$$H = \frac{p^2}{2} - \frac{1}{2q^2}$$

then show that (pq/2-Ht) is a constant of motion.

- b) A particle is moving under the force derived from the generalized potential $V = cx\dot{x}$, where c is a constant. Choose x, y, z as generalized co-ordinates and write down the Lagrangian of the particle, and hence obtain its generalized momentum p_x .
- c) Find the transformation generated by

$$F_1(q, Q) = qQ - m\omega q^2/2 - Q^2 /(4, mw)$$
,

where m, w are constants.

5. a) Find the stationary function of the integral

$$\int_{-1}^{1} ((y')^2 - 2xy) dx, y(-1) = -1, y(1) = 1.$$

- b) Write Hamilton's equations of motion using Poisson brackets. Show that $\frac{dH}{dt} = \frac{\partial H}{\partial t}$, where H denotes Hamiltonian.
- c) State and prove the Jacobi identity in case of Poisson brackets.
- 6. a) State and prove rotation formula.
 - b) Explain the diagramatically that finite rotations in three dimensions do not commute.
 - c) Define infinitesimal rotations. Show that infinitesimal rotations are pseudo-vectors.

4

6

4

6

4

8

6

5

5

-2-

		-3-	[4123] – 303
7.	a)	State and prove Euler's theorem on the motion of a rigid body	. 6
	b)	Define orthogonal transformations. Show that orthogonal trans two dimensions is equivalent to a rotation of coordinate axes.	sformations in 5
	c)	What are Euler angles ? Explain diagramatically.	5
8.	a)	Define central force motion. Show that it is always planar. Fur the areal velocity is constant.	ther show that 5
	b)	A particle moves along the curve, $\bar{r} = (\cos t)\hat{i} + (\sin t)\hat{j} + t\hat{k}$, starting at t = 0. Find velocity and acceleration at t = $\pi/2$.	5
	c)	Show that the central force motion of two bodies about their c can always be reduced to an equivalent one body problem.	enter of mass 6

B/I/12/200

Seat No.

M.A./M.Sc. (Semester – III) Examination, 2012 MATHEMATICS MT – 704 : Measure and Integration (New) (2008 Pattern)

Tim	e:	3 Hours Max. Marks : 8	80
	In	 structions: 1) Attempt any five questions. 2) Figures to the right indicate full marks. 	
1.	a)	If E_i 's are with $\mu E_1 < \infty$ and $E_i \supset E_{i+1}$ then prove that	
		$\mu(\bigcap_{i=1}^{\infty} E_i) = \lim_{n \to \infty} \mu E_n$	6
	b)	Show that the collection of locally measurable sets is a σ – algebra.	6
	c)	Let f be a bounded measurable function defined on the finite interval (a, b)	
		then show that $\lim_{\beta \to \infty} \int_{a}^{b} f(x) \sin (\beta x) dx = 0$.	4
2.	a)	If μ is complete measure and f is a measurable function, then f = g a.e. implies g is measurable.	4
	b)	Let for each α in a dense set D of real numbers there is assigned a set $B_{\alpha \in \mathbb{B}}$ such that $\mu(B_{\alpha} - B_{\beta}) = 0$ for $\alpha < \beta$. Then prove that there is a measurable	
		function f such that $f \leq \alpha$ a.e. on B_{α} and $f \geq \alpha$ a.e. on $X \sim B_{\alpha}$.	6
	c)	Show that every countable set has Hausdorff dimension zero.	6
3.	a)	State and prove Fatou's Lemma.	6
	b)	Let f_n be a sequence of nonnegative measurable functions which converge almost everywhere to a function f and $f_n \leq f$ for all n then prove that $\int f = \lim \int f_n$.	6
	C)	Show that monotone functions are measurable.	4
4.	a)	If f and g are integrable functions and E is a measurable set the shown that i) $\int_{E} (c_1 f + c_2 g) = c_1 \int_{E} f + c_2 \int_{E} g$. ii) If $ h \le f $ and h is a measurable then h is integrable. iii) If $f > g$ a e, then $ f > g $.	6
	b)	Let (X, \mathbb{B}) be a measurable space, $< \mu_n > a$ sequence of measures that converge set wise to a measure μ and $< f_n > a$ sequence of nonnegative measurable functions that converge pointwise to the function f then show that	F
		$\int u\mu \ge \int u\mu _{\Pi}$.	0
	0)	כווטש נוומו נוופופ פגוגו עוונטעוונמטופ גפנג טו צפוט ווופמגעופ.	4

P.T.O.

-2-

- 5. a) Let v be a signed measure on the measurable space (X, \mathbb{B}) then prove that there is a positive set A and a negative set B such that $X = A \cup B$ and $A \cap B = \phi$. **6**
 - b) Let μ , ν and λ be σ -finite. Show that the Radon-Nikodym derivative $\left[\frac{d\nu}{d\mu}\right]$

has the following properties :

- i) If $v \ll \mu$ and f is a nonnegative measurable function, then $\int f dv = \int f \left[\frac{dv}{d\mu} \right] d\mu.$ ii) $\left[\frac{d(v_1 + v_2)}{d\mu} \right] = \left[\frac{dv_1}{d\mu} \right] + \left[\frac{dv_2}{d\mu} \right].$ iii) If $v \ll \mu \ll \lambda$ then $\left[\frac{dv}{d\lambda} \right] = \left[\frac{dv}{d\mu} \right] \left[\frac{d\mu}{d\lambda} \right].$
- c) Show that the outer measure of an interval equals its length.
- 6. a) Let (X, \mathbb{B}, μ) be a finite measure space and g an integrable function such that for some constant M, $|\int g\phi d\mu| \le M ||\phi||_p$ for all simple functions ϕ then show that $g \in L^q$.
 - b) If μ is a finite Baire measure on the real line, then prove that its commutative distribution function F is a monotone increasing bounded function which is

continuous on the right and $\lim_{x\to\infty} F(x) = 0$.

- 7. a) i) Define an outer Measure μ^* .
 - ii) Show that the class \mathbb{R} of μ^* measurable sets is a σ -algebra.
 - iii) If $\overline{\mu}$ is μ^* restricted to \mathbb{B} , then prove that $\overline{\mu}$ is a complete measure on \mathbb{B} .
 - b) Define Product Measure. Let E be a set in $\mathbb{R}_{\sigma\delta}$ with $\mu \ge \nu$ (E) < ∞ then show that the function g defined by $g(x) = \nu \ge E_x$ is a measurable function of x and $\int g d\mu = \mu \times \nu(E)$.
- 8. a) If μ^* is a Caratheodory outer measure with respect to Γ then prove that every function in Γ is μ^* -measurable.
 - b) Let B be a μ^* -measurable set with $\mu^* B < \infty$ then prove that $\mu_* B = \mu^* B$.
 - c) If $< E_i >$ is any disjoint sequence of sets then show that $\sum_{i=1}^{\infty} \mu_* E_i \le \mu_* \left(\bigcup_{i=1}^{\infty} E_i \right)$. 4

8

4

6

8

8

8

8

Seat No.

M.A./M.Sc. (Semester – III) Examination, 2012 MATHEMATICS

MT - 704 : Mathematical Methods - I (Old)

Time : 3 Hours

Instructions : 1) Attempt any five questions.2) Figures to the right indicate full marks.

1.	a)	Test for convergence the series $1 + \frac{1}{2!} + \frac{1}{3!} + \dots + \frac{1}{n!} + \dots$	6
	b)	Find the interval of convergence of the following power series $\sum_{n=0}^{\infty} \frac{(2x)^n}{3^n}$.	5
	c)	To find the series for (x+1) sinx.	5
2.	a)	Solve the boundary value problem $y_u(x, t) = a^2 y_{xx}(x, t), 0 < X < L, t > 0$ subject to conditions $y(0,t) = 0$; $y(1, t) = 0$.	8
	b)	To find the Fourier coefficient with usual notations.	8
3.	a)	Expand the periodic function in a sine-cosine Fourier series.	8
		$f(x) = \begin{cases} 0, & -\pi & < x < 0 \\ 1, & 0 & < x < \frac{\pi}{2} \\ 0, & \frac{\pi}{2} & < x < \pi \end{cases}$	
	b)	Define even and odd functions and sketch the graphs of following functions. $f(x) = x^2$ and $f(x) = f(x) = cosx$.	8
4.	a)	Prove that $T = 4\sqrt{\frac{l}{2g}} \int_{0}^{\pi/2} \frac{d\theta}{\sqrt{\cos \theta}}$, where T is period and l is length of simple pendulum.	8

b) Prove that
$$\int_{-1}^{1} P_m(x) P_n(x) dx = 0$$
 if $m \neq n$. 8

[4123] - 304

Max. Marks: 80

-3-

5. a) Find $P_0(x)$, $P_1(x)$, $P_2(x)$, $P_3(x)$ and $P_4(x)$ by using Rodrigue's formula. **10**

b) Prove that
$$\int_{-1}^{1} [Pn(x)]^2 dx = \frac{2}{2n+1}$$
 if m = n. 6

6. a) Use Laplace transformation to solve the differential equation $y'' + 4y' + 13y = 20e^{-t}$, subject to conditions $y_0=1$, $y'_0=3$.

b) Find the value of
$$L^{-1} \left\{ \frac{3s+1}{(s+1)^4} \right\}$$
.

c) Find the Laplace transform of F(t), where F(t) =
$$\begin{cases} \cos\left(t - \frac{2\pi}{3}\right), & \text{if } t > \frac{2\pi}{3} \\ 0, & \text{if } t < \frac{2\pi}{3} \end{cases}$$

7. a) Obtain the Rodrigues formula for the Lagurre polynomials $L_n(\alpha)$ (X).

b) Expand the following function in Legendre series.

$$f(x) = \begin{cases} 0, & -1 < x < 0 \\ 1, & 0 < x < 1 \end{cases}$$

8. a) Prove that
$$J_p(x)J'_{-p}(x) - J_{-p}(x)J'_p(x) = -\frac{2}{\pi x}\sin p\pi$$
. 8

b) Show that
$$L{t^{h} f(t)} = (t)^{n} \frac{d^{n}}{ds^{n}} f(s)$$
. 8

B/I/12/220

8

-4-

[4123] - 306

Seat	
No.	

M.A./M.Sc. (Semester – III) Examination, 2012 MATHEMATICS MT-706 : Numerical Analysis (Old)

Time : 3 Hours

Max. Marks : 80

- **N.B.**: 1) Answer **any five** questions.
 - 2) Figures to the **right** indicate **full** marks.
 - 3) Use of unprogrammable, scientific calculator is allowed.
- 1. A) Assume that g (x) and $g^1(x)$ are continuous on a balanced interval (a, b) = (P - δ , P + δ) that contain the unique fixed point P and that starting value P₀ is chosen in the interval. Prove that if

 $|g^{1}(x)| \le K < 1 \forall x \in [a,b]$ then the iteration $P_{n} = g(P_{n-1})$ coverages to P and if $|g^{1}(x)| > 1 \forall x \in [a,b]$ then the iteration $P_{n} = g(P_{n-1})$ does not converges to P.

- B) Investigate the nature of iteration in part (A) when $g(x) = -4 + 4x \frac{x^2}{2}$
 - i) Show that P = 2 and P = 4 are the fixed points.
 - ii) Use $P_0 = 1.9$ and compute p_1 , p_2 , p_3 .
- C) Start with the interval [3.2, 4.0] and use the Bisection method to find an interval of width h = 0.05 that contain a solution of the equation log (x) - 5 + x = 0.
- 2. A) Assume that $f \in c^2[a,b]$ and exist number $p \in [a,b]$ where f(p) = 0. If $f'(p) \neq 0$ prove that there exist a $\delta \succ 0$ such that the sequence $\{p_k\}$ defined by iteration

$$\begin{split} p_k &= p_{k-1} - \frac{f(p_{k-1})}{f'(p_{k-1})} \text{ for } k = 1, 2... \text{ converges to } p \text{ for any initial approximation} \\ p_0 &\in \left[p - \delta, p + \delta\right]. \end{split}$$

P.T.O.

6

6

5

- B) Let $f(x) = (x 2)^4$
 - i) Find Newton-Raphson formula.
 - ii) Start with $p_0 = 2.1$ and compute compute p_1 , p_2 , p_3 .
 - iii) Is the sequence converging quadratically or linearly?

-2-

C) Solve the system of equation

2	1	1	-2]	$\begin{bmatrix} x_1 \end{bmatrix}$		[-10]
4	0	2	1	x ₂	_	8
3	2	2	0	x ₃	-	7
1	3	2	-1	$\begin{bmatrix} x_4 \end{bmatrix}$		5]

Using the Gauss elimination method with partial pivoting.

- 3. A) Explain Gaussian elimination method for solving a system of m equation in n knows.
 - B) Find the Jacobin J (X, Y, Z) of order 3 3 at the point (1, 3, 2) for the functions

$$f_1(X, Y, Z) = X^3 - Y^2 + Y - Z^4, f_2(X, Y, Z) = XY + YZ + XZ. f_3(X, Y, Z) = \frac{Y}{XZ}.$$
 5

C) Compute the divided difference table for f (x) = 3×2^{x}

x : -1.0 0.0 1.0 2.0 3.0

f(x): 1.5 3.0 6.0 12.0 24.0

Write down the Newton's polynomial $P_4(x)$.

4. A) Assume that $f \in C^{N+1}[a,b]$ and $x_0, x_1 \dots x_N \in [a, b]$ are N + 1 nodes. If $x_{\in}[a, b]$ then prove that $f(x) = P_N(x) + E_N(x)$.

where $P_N(x)$ is a polynomial that can be used to approximate f (x) and $E_N(x)$ is the corresponding error in the approximation.

6

5

6

5

B) Consider the system :

5x - y + z = 10 2x + 8y - z = 11 -x + y + 4z = 3P₀ = 0 And use Gauss Saidel iteration to find P. P.

And use Gauss-Seidel iteration to find P_1 , P_2 , P_3 . Will this iteration convergence to the solution ?

C) Find the triangular factorization A = LU for the matrix

	1	1	0	4]
۸_	2	-1	5	0
A =	5	2	1	2
	-3	0	2	0

5. A) Assume that $f \in C^5[a,b]$ and that x - 2h, x - x, x, x + h, $x + 2h \in [a,b]$ prove that $\dots - f(x) + 2h + 8f(x + h) - 8f(x - h) + f(x - 2h)$

$$f'(x) \bullet \frac{f(x) + 2h + 6h(x + h) - 6h(x - h) + h(x - 2h)}{12h}$$
 6

B) Let f (x) = x^3 find approximation for f'(2). Use formula in Part (a) with h = 0.05.

C) Use Newton's method with the starting value $(p_0, q_0) = (2.00, .25)$ compute $(p_1, q_1), (p_2, q_2)$ for the nonlinear system : $x^2 - 2x - y + 0.5 = 0, x^2 + 4y^2 - 4 = 0.$

6. A) Assume that $X_j = X_0 + h_j$ are equally spaced nodes and $f_j = f(x_j)$. Derive the

Quadrature formula
$$\int_{x_0}^{x_2} f(x) \bullet \frac{h}{3} (f_0 + 4f_1 + f_2).$$

B) Let f (x) = $\frac{8x}{2^{x}}$

Use cubic Langrange's interpolation based on nodes

$$x_0 = 0, x_1 = 1, x_2 = 2, x_3 = 3$$
 to approximate f (1.5). 5

C) Consider f (x) = 2 + sin $(2\sqrt{x})$. Investigate the error when the composite trapezoidal rule is used over [1, 6] and the number of subinterval is 10. **5**

[4123] - 306

5

5

8

8

7. A) Use Euler's method to solve the I V P

y' = -ty over [0, 0.2] with y(0) = 1. Compute y_1, y_2 with h = 0.1

Compare the exact solution y (0.2) with approximation.

B) Use the Runge-kutta method of order N = 4 to solve the I.V.P. $y' = t^2 - y$ over [0, 0.2] with y (0) = 1, (taken h = 0.1)

Compare with y (t) = $-e^{-t} + t^2 - 2t + 2$.

8. A) Use power method to find the dominant Eigen value and Eigen vector for the

Matrix $A = \begin{bmatrix} 0 & 11 & -5 \\ -2 & 17 & -7 \\ -4 & 26 & -10 \end{bmatrix}$ 8

- B) Use Householder's method to reduce the following symmetric matrix to trigonal form
 - $\begin{bmatrix} 2 & 1 & 1 \\ 1 & 1 & 0 \\ 1 & 0 & 1 \end{bmatrix}$

8

B/I/12/200

[4123] - 401

Seat	
No.	

M.A./M.Sc. (Semester – IV) Examination, 2012 MATHEMATICS MT-801 : Field Theory (2008 Pattern)

Time : 3 Hours

Max. Marks : 80

N.B.: 1) Attempt any five questions.2) Figures to the right indicate full marks.

1.	a)	Let $f(x) \in \mathbb{Z}[x]$ be primitive, then prove that $f(x)$ is reducible over Q if and only if it is reducible over Z.	5
	b)	Show that $x^3 - x - 1 \in \mathbb{Q}[x]$ is irreducible over \mathbb{Q} .	5
	c)	Find all irreducible polynomials of degree 3 over Z_2 .	6
2.	a)	Let E be a finite extension of a field F and K be a finite extension of E, then prove that K is also finite extension of F.	6
	b)	Prove that finite extension E of a finite field F is a simple extension.	5
	c)	Establish the equality $\mathbb{Q}(\sqrt{2}, \sqrt{5}) = \mathbb{Q}(\sqrt{2} + 3\sqrt{5})$.	5
3.	a)	If a multiplicative group F^* of non-zero elements of a field F is cyclic, then prove that F is finite.	6
	b)	Give an example of a polynomial $f(x) \in F[x]$ of degree n such that the splitting field E of $f(x)$ over F has degree n.	5
	c)	Find the splitting field of $f(x) = x^4 - z \in \mathbb{Q}[x]$.	5
4.	a)	Let F be a field, and let $\sigma: F \to L$ be an embedding of F into an algebraically closed field L. Let $E = F(\alpha)$ be an algebraic extension of F, then prove that σ can be extended to an embedding $\eta: E \to L$. How many such extensions are possible ? Explain.	6
	b)	Prove that every finite extension of a finite field is normal.	5
	c)	Let F be a finite field with 625 elements. Does there exist a subfield of F with 125 elements ? With 25 elements ? Justify.	5

5.	a)	Let H be a finite subgroup of a group of automorphisms of a field E, then prove that $[E:E_{H}] = H $, $ H $ denotes the order of H.	6
	b)	If F is a finite field of characteristic P, then show that each element $a \in F$ has a unique p^{th} root $\sqrt[p]{a \in F}$.	5
	c)	Show that the group of Q-auto morphisms of $\mathbb{Q}(\sqrt[3]{2})$ is a trivial group.	5
6.	a)	Let E be a finite separable extension of a field F and E is normal extension of F, then prove that F is the fixed field of $G(E/F)$.	8
	b)	Let $E = \mathbb{Q}(\sqrt[3]{2}, \omega)$, where $w^3 = 1$, $w \neq 1$. Let σ_0 be the identity automorphism of E and let σ_1 be an automorphism of E such that $\sigma_1(w) = w^2$ and $\sigma_1(\sqrt[3]{2}) = W(\sqrt[3]{2})$. If $G = \{\sigma_0, \sigma_1\}$, the show that $E_G = \mathbb{Q}(\sqrt[3]{2} w^2)$.	8
7.	a)	State only the fundamental theorem of Galois theory.	4
	b)	Find the galois group G(K/Q), where $K = Q(\sqrt{3}, \sqrt{5})$.	6
	c)	Is $\frac{\mathbb{R}[x]}{\langle x^2-2 \rangle}$ a field ? Justify your answer.	3
	d)	Find the basis of $\mathbb{Q}(\sqrt[4]{2})$ over \mathbb{Q} .	3
8.	a)	Prove that a real number a is constructible from Q if and only if (a, 0) is constructible point from $Q \times Q$.	5
	b)	Show that if an irreducible polynomial $p(x)$ in $F[x]$ over a field F has a root in radical extension of F, then $p(x)$ is solvable by radicals over F.	6
	c)	Find the basis of $\mathbb{Q}(\sqrt[3]{2},\sqrt{5})$ over \mathbb{Q} .	5

B/I/12/450

[4123] – 401

[4123] - 402

Seat	
No.	

M.A./M.Sc. (Semester – IV) Examination, 2012 MATHEMATICS MT-802 : Combinatorics (New) (2008 Pattern)

Time : 3 Hours

Max. Marks : 80

N.B.: 1) Attempt any five questions.2) Figures to the right indicate full marks.

- A) What is the probability of randomly choosing a permutation of the 10 digits
 0, 1, 2,9 in which :
 - a) An odd digit is in the first position and 1, 2, 3, 4 or 5 is in the last position.
 - b) 5 is not in the first position and 9 is not in the last position.
 - B) Prove by combinatorial argument that

$$\binom{r}{r} + \binom{r+1}{r} + \binom{r+2}{r} + \dots + \binom{n}{r} = \binom{n+1}{r+1}$$

Hence, evaluate the sum

 $1 \times 2 \times 3 + 2 \times 3 \times 4 + \dots + (n-2)(n-1)n$.

- C) Find the rook polynomial for a full $n \times n$ board.
- 2. A) How many 8- digit sequences are there involving exactly six different digits? 6
 - B) Find ordinary generating function whose coefficient a_r equals r. Hence evaluate the sum 0+1+2 ++ n.
 - C) How many nonnegative integer solutions are there to the inequalities $x_1 + x_2 + \dots + x_6 \le 20$ and $x_1 + x_2 + x_3 \le 7$?

P.T.O.

4

6

6

[41	23]] – 402	-2-	
3.	A)	Use gene 7 copies o if each te book.	erating functions to find number of ways to split 6 copies of one book, of a second book and 11 copies of a third book between two teachers acher gets 12 books and each teacher gets at least 2 copies of each	6
	B)	How mar sequence	ny permutations of the 26 letters are there that contain none of the es MATH, RUNS, FROM, or JOE ?	6
	C)	Find a ge whose su	enerating function for the number of integers between 0 and 9,99,999 um of digits is r.	4
4.	A)	How mar dimes an	ny ways are there to make an r- arrangement of pennies, nickels, Ind quarters with at least one penny and an odd number of quarters ?	6
	B)	Solve the	e recurrence relation	6
		a _n = 3a _n	$a_{n-1} - 3a_{n-2} + a_{n-3}, a_0 = a_1 = 1, a_2 = 2.$	
	C)	Show that pair of interest of the second sec	at any subset of eight distinct integers between 1 and 14 contains a tegers k, I such that k divides I.	4
5.	A)	How mar rooms wi	ny ways are there to assign 20 different people to three different th at least one person in each room ?	6
	B)	Find a ro c ₃ , c ₄ to would no like card	ok polynomial to send 4 different birthday cards denoted by c_1 , c_2 , four persons p_1 , p_2 , p_3 , p_4 if p_1 would not like cards c_2 or c_3 ; p_2 it like cards c_1 or c_4 ; p_3 would not like cards c_2 or c_4 ; p_4 would not c_3 .	6
	C)	How mar with the p	ny sequences of length 5 can be formed using the digits 0, 1, 2,9 property that exactly two of the 10 digits appear. (e.g. 05550).	4
6.	A)	Suppose How mar	a bookcase has 200 books 70 in French, and 100 about mathematics. ny non-French books not about mathematics are there if	6
		i) There a	are 30 French mathematics books ?	
	B)	Solve the	are ourrence relation	6
)			U
	<u> </u>	a _n = – na	$a_{n-1} + m$ given $a_0 = 1$.	
	C)	Show that always co	at any subset of $n + 1$ distinct integers between 2 and 2n ($n \ge 2$) ontains a pair of integers with no common divisor.	4

[4123] - 402

7. A) Using generating functions, solve the recurrence relation. $a_n = a_{n-1} + n(n-1)$; $a_0 = 1$.

-3-

- B) How many 10- letter words are there in which each of the letters e, n, r, s occur
 - i) at most once?
 - ii) at least once?
- C) How many ways are there to distribute eight distinct balls into six boxes with the first two boxes collectively having at most four balls.
- 8. A) Five officials $O_1, O_2, ..., O_5$ are to be assigned five different city cars an Escort, a Lexus, a Nissan, a Taurus and a Volvo.

O1 will not drive an Escort or Volvo;

 O_2 will not drive Lexus or Nissan; O_3 will not drive Nissan; O_4 will not drive Escort or volvo; O_5 will not drive Nissan. How many ways are there to assign the officials to different cars ?

B) Find and solve a recurrence relation for the number of ways to arrange flags on an n-foot flagpole using three types of flags: red flags 2 feet high, yellow flags 1 foot high and blue flags 1 foot high.

8

6

4

[4123] – 402

M.A./M.Sc. (Semester – IV) Examination, 2012 MATHEMATICS MT-802 : Hydrodynamics (Old)

-4-

Time : 3 Hours

N.B.: 1) Attempt any five questions. 2) Figures to the right indicate full marks.

- 1. a) What are stream lines ? Are stream lines and paths of particles of a fluid always the same ? Give reason.
 - b) A three dimensional velocity field is given by

$$u = xy^{2}t, v = \frac{1}{3}y^{3}t^{3}, w = \frac{1}{2}xyz^{2}t^{2}.$$

Determine the total acceleration at (1, 1, 1) at t = 1 sec.

c) Write a note on physical interpretation of stream function.

2. a) Prove that $\int \frac{dp}{\rho} + \frac{1}{2}q^2 + \Omega = c$ when the motion is steady and the velocity

potential does not exist, Ω being the potential function from which the external forces are derivable.

b) Show that the variable ellipsoid $\frac{x^2}{a^2k^2t^4} + kt^2\left[\left(\frac{y}{b}\right)^2 + \left(\frac{z}{c}\right)^2\right] = 1$

is a possible form for the boundary surface of a liquid at any time t.

- 3. a) Find the radial and transverse components of velocity of a fluid particle in terms of velocity potential and stream function.
 - b) A flow pattern is obtained by the superposition of two flow patterns 1 and 2 defined by stream function

$$\psi_1 = \frac{y^3}{3} - x^2y + 2xy$$
 and velocity potential $\phi_2 = 2x^2 - 2y^2$

Show that both of the flow patterns are irrotational and obtain the velocity components for the combined flow.

4

6

Max. Marks: 80

8

6

10

- 4. a) State and prove Circle theorem.
 - b) A circular cylinder is fixed across a stream of velocity V with circulation K round the cylinder. Show that the maximum velocity in the liquid is $2V + \frac{K}{2\pi a}$, 10 where a is the radius of cylinder.
- 5. a) State and prove theorem of Kutta and Joukowski.
 - b) Two pairs of vortices each of strength K are situated at $(\pm a, 0)$ and a point vortex of strength $\frac{-K}{2}$ is situated at origin. Show that the liquid motion is stationary. Determine stagnation point.
- 6. a) Define : Vortex lines, Vortex tube and Vortex filament. Determine stream lines in case of Vortex pair.
 - b) Between the two fixed boundaries $\theta = \frac{\pi}{6}$ and $\theta = \frac{-\pi}{6}$, there is a two dimensional liquid motion due to a source at a point r = c, $\theta = \alpha$ and a sin K at origin, absorbing water at the same rate as the source produces it. Find the stream function and show that one of the stream lines is a part of the curve $r^3 \sin 3\alpha = c^3 \sin 3\theta$.
- 7. a) Obtain the relation between stress and rate of strain components. 8 b) Show that stress tensor is symmetric. 8 8. Write explanatory notes on any two : 16
 - a) Blasius theorem.
 - b) Lagrangian and Eulerian methods.
 - c) Image of a source in a circle.
 - d) Karman's vortex sheet.

B/I/12/450

[4123] - 402

6

8

8

8

8

-5-

[4123] - 403

Max. Marks: 80

4

6

6

4

6

6

4

Seat	
No.	

M.A./M.Sc. (Semester – IV) Examination, 2012 MATHEMATICS MT 803 : Differential Manifolds (2008 Pattern)

Time : 3 Hours

N.B.: 1) Attempt any five questions.2) All questions carry equal marks.

a) Let W be a K-dimensional subspace of Rⁿ. Show that there exists an orthogonal transformation on Rⁿ that carries W onto R^k x 0.

b) Let
$$X = \begin{pmatrix} 1 & 0 & 1 \\ 0 & -1 & 1 \\ 1 & 0 & -1 \\ 0 & 0 & 1 \end{pmatrix}$$
. Find V(X). 4

- c) Give an example of a 1 manifold in \mathbb{R}^3 .
- 2. a) Let M be a manifold in IRⁿ, and let $\alpha : U \to V$ be a coordinate patch on M. If U₀ is a subset of U that is open in U, then show that the restriction of α to U₀ is also a coordinate patch on M.
 - b) Show that the function α :[0, 1] \rightarrow S¹ given by α (t) = (cos2 π t, Sin2 π t) is not a coordinate patch on S¹.
 - c) Give an example of a compact 2-manifold without boundary.

3. a) If the support of f can be covered by a single coordinate patch, then show that

the integral $\int_{M} f dv$ is well defined, independent of the choice of coordinate patch.

- b) Find area of the 2-sphere $S^2(a)$.
- c) Give an example of a 2-tensor on \mathbb{R}^4 .

P.T.O.

4.	a)	If f is an alternating K-tensor and g is an alternating I-tensor, then show that $g_{\wedge}f = (-1)^{kl} f_{\wedge}g$.	8
	b)	Show that $f(x, y) = x_i y_j - x_j y_i$ is an alternating tensor on \mathbb{IR}^n .	4
	c)	Find basis and dimension of the space A^k (v) of alternating K-tensors on V; where dimension of V is n.	4
5.	a)	Let M be a K-manifold in IR ⁿ and $P \in M$. Define the tangent space to M at p and show that it is independent of the choice of the coordianate patch at p.	6
	b)	Consider the form :	
		W = xydx + 3 dy - yz dz. Verify by direct computation that $d(dw) = 0$.	6
	c)	Define the terms :	
		i) Exact form ii) Closed form.	4
6.	a)	If w and η are forms of orders k and I respectively, then prove that $d(w \wedge \eta) = dw \wedge \eta + (-1)^k w \wedge d\eta$.	8
	b)	In \mathbb{R}^3 , let w = xzdx + 2x dy - xdz. Let $\alpha : \mathbb{R}^2 \to \mathbb{R}^3$ be given by the equation	
		$\alpha(u,v) = (u^2,u + v,uv) .$	
		Calculate:	
		i) dw, ii) $\alpha^* w$ iii) $\alpha^* (dw)$ iv) d ($\alpha^* w$) directly.	8
7.	a)	Define orientable manifold. Prove that if M is an orientable k-manifold (k>1) with non-empty boundary, then ∂ m is orientable.	8
	b)	Let $A = (0, 1)^2$. Let $\alpha : A \to \mathbb{R}^3$ be given by the equation $\alpha(u, v) = (u, v, u+v)$.	
		Let y be the image set of α . Evaluate $\int\limits_{Y\alpha}\!$	8
8.	a)	State Stokes' theorem and deduce Green's theorem from it.	8
	b)	If M is an orientable $(n-1)$ manifold in \mathbb{R}^n , then define unit normal field to M w.r.t. given orientation.	4
	c)	Give an example of a non-orientable manifold.	4

B/I/12/220

[4123] - 404

Seat	
No.	

M.A./M.Sc. (Semester – IV) Examination, 2012 MATHEMATICS MT – 804 : Algebraic Topology (New) (2008 Pattern)

Time : 3 Hours

Max. Marks : 80

5

5

N.B.: 1) Attempt any five questions.2) Figures to the right indicate full marks.

1. a)	Let $i:S^{n-1}\to B^n$ be the inclusion map. Show that $f:B^n\to S^{n-1}$ with $f\circ i=I$ if	
	and only if the identity map $I : S^{n-1} \to S^{n-1}$ is homotopic to a constant map.	6

- b) Prove that the relation of being homotopic relative to a set A is an equivalence relation.
- c) Let f, g : $X \to S^n$ be continuous mappings such that f (x) $\neq -g(x)$ for all $x \in X$. Show that f is homotopic to g.
- 2. a) Prove that if Y is contractible, then every continuous mapping $f: X \to Y$ is homotopic to a constant map. 6
 - b) Define a strong deformation retract A of a topological space X. Prove that Sⁿ is a strong deformation retract of ℝⁿ⁺¹ {0}.
 5
 - c) Show that a retract of a Housdorff space is a closed subset. 5
- 3. a) Prove that if f is any path, then $f * \overline{f}$ and $\overline{f} * f$ are homotopic to null paths. 6
 - b) Let $f:[0, 1] \rightarrow X$ be a path in X and let $g:[0, 1] \rightarrow [0, 1]$ be a continuous map. Show that f is homptopic to $f \circ g$ relative to $\{0, 1\}$. 5
 - c) Show that every path connected space is connected. Is converse true ? Justify your answer.

5 P.T.O.

[4123	3]	- 404 -2-	-	
4. :	a)	Let $x_0, x_1 \in X$. Suppose there is a particular fundamental groups $\pi_1(X, x_0)$ and $\pi_1(X, x_0)$	ath in X from x_0 to x_1 . Prove $_1(X, x_1)$ are isomorphic.	that the 6
I	b)	Prove that the fundamental group of a order two.	the real projective plane is a	cyclic of 5
	c)	Let X and Y be of same homotopy equivalence. Prove that $\phi^* : \pi_1(X, x)$ any $x \in X$.	type and $\phi: X \to Y$ be a $\rightarrow \phi_1(Y, \phi(x))$ is an isomorp	homotopy phism for 5
5. 3	a)	Show that the fundamental group of t integers.	he circle S ¹ is the additive g	roup of 8
I	b)	Find the fundamental groups of the thre	e spaces : \mathbb{R}^n , $\mathbb{R}^2 - \{0, 0\}$, and	dS ¹ ×IR. 8
6. 8	a)	Define a covering map. Show that a co	vering map is a local homeon	norphism. 6
I	b)	Give an example of a nonidentity cov	ering map from S^1 onto S^1 .	5
	c)	Let $p : \widetilde{X} \to X$ and $q : \widetilde{Y} \to Y$ be covering is a covering map.	ig maps. Show that $p \times q : \widetilde{X} \times \widetilde{Y}$	$\tilde{Y} \to X \times Y$ 5
7. a	a)	Let $p:\widetilde{X}\to X$ be a fibration with uniqu	ue path lifting. Suppose that f	and g are
		paths in \widetilde{X} with f (0) = g (0) and pf ~	pg. Prove that f ~ g.	6
I	b)	Let $p : E \to B$ be a fibration. Prove that of B.	at p (E) is a union of path co	mponents 5
	c)	A fibration has unique path lifting if ev	very fiber has non-null path.	5
8. 3	a)	Prove that the closed ball $B^n (n \ge 1)$ h	as the fixed point property.	8
l	b)	Prove that every complex has a bary	centric subdivision.	8

-

[4123] – 404

Seat	
No.	

M.A./M.Sc. (Semester – IV) Examination, 2012 MATHEMATICS MT – 804 : Mathematical Methods – II (Old)

Time : 3 Hours

Max. Marks : 80

4

- **N.B.**: i) Attempt **any five** questions. ii) Figures to the **right** indicate **full** marks.
- 1. a) Define :
 - i) Fredholm integral equation of the first kind.
 - ii) Symmetric Kernels.

b) Show that the function u (x) = $(1 + x^2)^{\frac{-3}{2}}$ is a solution of the integral equation

$$u(x) = \frac{1}{1+x^2} - \int_0^x \frac{t}{1+x^2} u(t) dt.$$
 6

c) Explain the method to find the solution of the integral equation

$$\phi(s) = \lambda \int_{a}^{b} K(s, t) \phi(t) dt$$
, where K(s, t) is separable Kernel. **6**

2. a) Convert the following initial value problem into volterra integral equation

$$\frac{d^2y}{dx^2} + xy = 1, y (0) = y' (0) = 0.$$
8

b) Reduce the following boundary value problem into an integral equation

$$\frac{d^2y}{dx^2} + xy = 1 \text{ with } y (0) = y (1) = 0.$$

3. a) Find eigen values and eigen vectors or eigen functions of the homogeneous

Fredholm integral equation of the second kind
$$\phi(x) = \lambda \int_{0}^{1} (2xt - 4x^2) \phi(t) dt$$
. 8

b) Find the iterated Kernels for the Kernel K (x, t) = $e^x \cos t$; $a = 0, b = \pi$. 8

-3-

[4123] - 404

4. a) Solve u (x) =
$$e^x - \frac{1}{2}e + \frac{1}{2} + \frac{1}{2}\int_0^1 u(t) dt$$
 by resolvent Kernel. 8

b) Find the Neumann series for the solution of the integral equation

$$y(x) = 1 + x + \lambda \int_{0}^{1} (x - t) y(t) dt$$
. 8

5. a) State and prove isoperimetric problem.

b) Find the extremal of the functional
$$\int_{x_0}^{x_1} \left(\frac{y'^2}{x^3} \right) dx$$
. 8

6. a) Prove that $\frac{d}{dx} \frac{\partial f}{\partial y'} - \frac{\partial f}{\partial y} = 0$ (Euler-Lagrange's equation) with usual notations. 8

b) Let $\psi_1(s), \psi_2(s), \ldots$ be a sequence of functions whose norms are all below a fixed bound M and for which the relation $\psi_n(s) - \lambda \int K(s, t) \psi_n(t) dt = 0$ holds in the sense of uniform convergence. Prove that the functions $\psi_n(s)$ form a smooth sequence of functions with finite asymptotic dimension.

7. a) Solve the symmetric integral equation $y(x) = x^2 + 1 + \frac{3}{2} \int_{-1}^{1} (xt + x^2 t^2) y(t) dt$ by using Hilbert Schmidt theorem.

- b) State and prove Harr theorem.
- 8. a) State and prove principal of Least action.
 - b) Find the path on which a particle in the absence of friction, will slide from one point to another in the shortest time under the action of gravity.

B/I/12/220

6

10

8

8

8

8

-4-

Time : 3 Hours

[4123] - 405

Max. Marks: 80

Seat	
No.	

M.A./M.Sc. (Semester – IV) Examination, 2012 MATHEMATICS MT-805 : Lattice Theory (2008 Pattern)

		N.B. : 1) Attempt any five questions.2) Figures to the right indicate full marks.	
1.	a)	Let A be the set of all real valued functions defined on a set X; for f, $g \in A$, set $f \le g$ to mean $f(x) \le g(x)$ for all $x \in X$. Prove that $\langle A; \le \rangle$ is a lattice.	t 5
	b)	Define a complete lattice and prove that a poset $\langle L; \leq \rangle$ is a complete lattice if and only if in f H exists for any subset H of L.	5
	c)	Define a congruence relation on a lattice L and find all congruence relations of a non-modular lattice N_5 .	6
2.	a)	Prove that if a lattice L is distributive, then Id(L), the ideal lattice of L, is distributive.	5
	b)	Prove that a lattice L is distributive if and only if for any two ideals I, J of L, $I \lor J = \{i \lor j i \in I, j \in J\}$	6
	c)	Show that an ideal P is a prime ideal of a lattice L if and only if L\P is a dual ideal.	5
3.	a)	Let L be a pseudocomplemented lattice. Assuming $S(L) = \{a * a \in L\}$ is a lattice, prove that $S(L)$ is distributive.	4
	b)	Prove that every complete lattice is bounded. Is the converse true ? Justify your answer.	4
	c)	Prove that a lattice is modular if and only if it does not contain a pentagon (N_5) as a sublattice.	8
			P.T.O.
[4123] – 405			
--------------	----	--	---
4.	a)	Prove that in a finite lattice L, every element is the join of join-irreducible elements.	5
	b)	Show that the following inequalities hold in any lattice.	5
		1) $(x \wedge y) \vee (x \wedge z) \leq x \wedge (y \vee z);$ 2) $(x \wedge y) \vee (x \wedge z) \leq x \wedge (y \vee (x \wedge z)).$	
	c)	Prove that every maximal ideal of a distributive lattice is prime but the converse need not hold.	6
5.	a)	Prove that every maximal Chain C of the finite distributive lattice L is of	
		length $ J(L) $ where J(L)is the set of all join-irreducible elements of L.	5
	b)	Prove that every isomorphism is an isotone map. Is the converse true ? Justify.	4
	c)	State and prove Nachbin Theorem.	7
6.	a)	Let L be a finite distributive lattice. Then show that the map ϕ : $a \rightarrow r(a)$ is an isomorphism between L and H(J(L)), the hereditary subsets of the set of join-irreducibles of L.	8
	b)	Let L be a distributive lattice, let I be an ideal, let D be a dual ideal of L, and let $I \cap D = \phi$. Then prove that there exists a prime ideal P of L such that $P \supseteq I$	
		and $P \cap D = \phi$.	8
7.	a)	State and prove Jordan-Hölder Theorem for semimodular lattices.	8
	b)	Let L be a complete lattice and f : L \rightarrow L be an isotone map. Then prove that there exists $a \in L$ such that f(a) = a.	5
	c)	Prove that the ideal lattice of a Boolean lattice need not be Boolean.	3
8.	a)	Prove that any finite distributive lattice is pseudocomplemented.	4
	b)	Prove that the absorption identities imply the idempotency of ${}_{\wedge}and{}_{\vee}.$	4
	c)	Let L be a finite distributive lattice and $S(L) = \{a^* a \in L\}$. Then prove that	6
		i) $a \in S(L)$ if and only if $a = a^{**}$ ii) $a, b \in S(L)$ implies $a \land b \in S(L)$.	
	d)	Find a bounded distributive lattice L such that $S(L) = \{0, 1\}$ and $ L > 3$.	2

##